Çë½Ì¸ßÊÖ£ºmatlabÇóÈýÔªº¯ÊýµÄ×îСֵÎÊÌâ

ʱ¼ä£º2014.11.11 ·¢²¼ÈË£ºbuncr

Çë½Ì¸ßÊÖ£ºmatlabÇóÈýÔªº¯ÊýµÄ×îСֵÎÊÌâ

Òѽâ¾öÎÊÌâ

¹È¸èbuncrÓû§ÔÚ2014.11.11Ìá½»Á˹ØÓÚ¡°°ÂµÏa6Çë½Ì¸ßÊÖ£ºmatlabÇóÈýÔªº¯ÊýµÄ×îСֵÎÊÌ⡱µÄÌáÎÊ£¬»¶Ó­´ó¼ÒÓ¿Ô¾·¢±í×Ô¼ºµÄ¹Ûµã¡£Ä¿Ç°¹²ÓÐ1¸ö»Ø´ð£¬×îºó¸üÐÂÓÚ2025-02-24T08:09:03¡£Ï£Íû´ó¼ÒÄܹ»°ïÖúËý¡£

ÏêϸÎÊÌâÃèÊö¼°ÒÉÎÊ£ºÆÚ´ýÄúµÄ´ð°¸£¬ÕæÐÄÅå·þÄã,лл £¡

Ï£ÍûÒÔϵĻشð£¬Äܹ»°ïÖúÄã¡£

µÚ1¸ö»Ø´ð

Óû§Ãû£ºzyzfyz123456  

7.1.1·Ö¶ÎÏßÐÔ²åÖµËùν·Ö¶ÎÏßÐÔ²åÖµ¾ÍÊÇͨ¹ý²åÖµµãÓÃÕÛÏß¶ÎÁ¬½ÓÆðÀ´±Æ½üÔ­ÇúϬÕâÒ²ÊǼÆËã»ú»æÖÆÍ¼ÐεĻù±¾Ô­Àí¡£ÊµÏÖ·Ö¶ÎÏßÐÔ²åÖµ²»Ðè±àÖÆº¯Êý³ÌÐò£¬MATLAB×ÔÉíÌṩÁË**º¯ÊýÎÊ´ðinterp1ÆäÖ÷ÒªÓ÷¨ÈçÏÂÐø£ºinterp1(x,y,xi)һά²åÖµ¡ôyi=interp1(x,y¿ó¸÷¶Ó,xi)¶ÔÒ»×éµã(x,y)½øÐвåÖµ£¬¼ÆËã²åÖµµãxiµÄº¯ÊýÖµ¡£xΪ½ÚµãÏòÁ¿Öµ£¬yΪ¶ÔÓ¦µÄ½Úµãº¯ÊýÖµ¡£Èç¹ûyΪ¾ØÕó£¬Ôò²åÖÔyµÄÿһ´©ÁнøÐУ¬ÈôyµÄάÊý³¬³öx»òxi²ÅÈθßͨÎÒ¶·¶·µÄάÊý£¬Ôò·µ»ØNaN¡£¡ôyi=interp1(y,xi)´Ë¸ñʽĬÈÏx=1:n£¬nΪÏòÁ¿yµÄÔªËØ¸öÊýÖµ£¬»òµÈÓÚ¾ØÕóyµÄsize(y,1)¡£¡ôyi=interp1(x,y,xi,¡¯method¡¯)metho»úÉ¢ÑØ·ÛÃç¼ÃÑɳ³¯±¶dÓÃÀ´Ö¸¶¨²åÖµµÄËã·¨¡£Ä¬ÈÏΪÏßÐÔËã·¨¡£ÆäÖ**£ÓõĿÉÒÔÊÇÈçϵÄ×Ö·û´®¡£¡ñnearestÏßÐÔ×î½üÏî²åÖµ¡£¡ñlinearÏßÐÔ²åÖµ¡£¡ñsplineÈý´ÎÑùÌõ²åÖµ¡£¡ñcubicÈý´Î²åֵɳ·ñ´´Òæ¼ÌÂÞÖ¯º£¿óÈë¡£ËùÓеIJåÖµ·½·¨ÒªÇóxÊǵ¥µ÷µÄ¡£xÒ²¿ÉÄܲ¢·ÇÁ¬ÐøµÈ¾àµÄ¡£ÕýÏÒÇúÏߵIJåֵʾÀý£º>>x=0:0.1:10;>>y=sin(x);>>xi=0:0.25:10;>>yi=interp1(x,y¼Á˳,xi);>>plot(x,y,¡¯0¡¯,xi,yi)Ôò¿ÉÒԵõ½ÏàÓ¦µÄ²åÖµÇúϨ¶ÁÕß¿É×Ô¼ºÉÏ»úʵÑ飩¡£MatlabÒ²Äܹ»Íê³É¶þά²åÖµµÄÔËË㣬ÏàÓ¦µÄº¯ÊýΪinterp2£¬Ê¹Ó÷½·¨Óëinterpl»ù±¾Ïàͬ£¬Ö»ÊÇÊäÈëºÍÊä³öµÄ²ÎÊýΪ¾ØÕ󣬶ÔÓ¦ÓÚ¶þÎ¬Æ½ÃæÉϵÄ**µã£¬ÏêϸµÄÓ÷¨¼ûMatlabÁª»ú°ïÖú¡£7.1ÆÕͬÎÞÁеȾɸÖÐżÓ.2×îС¶þ³Ë·¨ÄâºÏÔÚ¿ÆÑ§ÊµÑéµÄͳ¼Æ·½·¨Ñо¿ÖÐ,ÍùÍùÒª´ÓÒ»×éʵÑé**ÖÐѰÕÒ³ö×Ô±äÁ¿xºÍÒò±äÁ¿yÖ®¼äµÄº¯Êý¹ØÏµy=f(x)¡£ÓÉÓÚ¹Û²â**ÍùÍù²»¹»×¼È·£¬Òò´Ë²¢Á¸½²³µ²»ÒªÇóy=f(x)¾­¹ýËùÓеĵã,¶øÖ»ÒªÇóÔÚ¸ø¶¨µãÉÏÎó²î°´ÕÕijÖÖ±ê×¼´ïµ½×îС£¬Í¨³£²ÉÓÃÅ·ÊÏ·¶Êý×÷ΪÎó²îÁ¿¶ÈµÄ±ê×¼¡£Õâ¾ÍÊÇËùνµÄ×îС¶þ³Ë·¨¡£ÔÚMATLABÖÐʵÏÖ×îС¶þ³Ë·¨ÄâºÏͨ³£²ÉÓÃpolyf·áÊ×ÑÛÏØitº¯Êý½øÐС£º¯ÊýpolyfitÊÇÖ¸ÓÃÒ»¸ö¶àÏîʽº¯ÊýÀ´¶ÔÒÑÖª**½øÐÐÄâºÏ£¬ÎÒÃÇÒÔÏÂÁÐ**ΪÀý½éÉÜÕâ¸öº¯ÊýµÄÓ÷¨£º>>x=0:0.1:1£»>>y=[´´³¬ÖùæÍ⸮-0.4471.9783.286.167.087.347.669.569.489.3011.2]ΪÁ˶«ÑÐÐÍÑϸè¸ß¼ÒÖÖ×´Õ¾ºÏʹÓÃpolyfit£¬Ê×ÏȱØÐëÖ¸¶¨ÎÒÃÇÏ£ÍûÒÔ¶àÉÙ½×¶àÏîʽ¶ÔÒÔÉÏ**½øÐÐÄâºÏ£¬Èç¹ûÎÒÃÇÖ¸¶¨Ò»½×¶àÏîʽ£¬½á¹ûΪÏßÐÔ½üËÆ£¬Í¨³£³ÆÎªÏßÐԻع顣ÎÒÃÇÑ¡Ôñ¶þ½×¶àÏîʽ½øÐÐÄâºÏ¡£>>P=polyfitÇò¼Æ»¤±³Ëµ½ÐÒæÓñÐû¾®´¥(x,y,2)P=-9.810820.1293-0.03ºõÂ̲Î˹ѽ×Ö17º¯Êý·µ»ØµÄÊÇÌýÎÝ»¯¹¤Ò»¸ö¶àÏîʽϵÊýµÄÐÐÏòÁ¿£¬Ð´ÕùÖØ×óËÄÁ³°ïÃËÃæ½­Éú³É¶àÏîʽÐÎʽΪ£ºÎªÁ˱ȽÏÄâºÏ½á¹û£¬ÎÒÃÇ»æÖÆÁ½ÕßµÄͼÐΣº>>xi=linspace(0,1,10´¦Ìú0);%»æÍ¼µÄX-Öá**¡£>>Z=polyval(p,xi);%µÃµ½¶àÏîʽÔÚ**µã´¦µÄÖµ¡£µ±È»£¬ÎÒÃÇÒ²ÎÞ¹âǧ¿ÉÒÔÑ¡Ôñ¸ü¸ßÃݴεĶàÏîʽ½øÐÐÄâºÏ£¬Èç10½×£º>>p=polyfit(x,y,10);>>xi=linspace(0,1,100);>>z=ployval(p,xi);¶ÁÕß¿ÉÒÔÉÏ»ú»æÍ¼½øÐбȽϣ¬ÇúÏßÔÚ**µã¸½½ü¸ü¼Ó½Ó½ü**µãµÄ²âÁ¿ÖµÁË£¬µ«´ÓÕûÌåÉÏÀ´Ëµ£¬ÇúÏß²¨¶¯±È½Ï´ó£¬²¢²»Ò»¶¨ÊʺÏʵ¼ÊʹÓõÄÐèÒª£¬ËùÒÔÔÚ½øÐи߽×ÇúÏßÄâºÏʱ£¬¡°Ô½¸ßÔ½ºÃ¡±µÄ¹Ûµã²»Ò»¶¨¶ÔµÄ¡£7.2·ûºÅ¹¤¾ßÏä¼°ÆäÓ¦ÓÃÔÚÊýѧӦÓÃÖУ¬³£³£ÐèÒª×ö¼«ÏÞ¡¢Î¢·Ö¡¢Çóµ¼ÊýµÈÔËË㣬MATLAB³ÆÕâЩÔËËãΪ·ûºÅÔËËã¡£MATLABµÄ·ûºÅÔËË㹦ÄÜÊÇͨ¹ýµ÷Ó÷ûºÅÔËË㹤¾ßÏä(SymbolicMathToolbox)ÄڵŤ¾ßʵÏÖ£¬ÆäÄÚºËÊǽèÓÃMapleÊýѧÈí¼þµÄ¡£MATLABµÄ·ûºÅÔËË㹤¾ßÏä°üº¬ÁË΢»ý·ÖÔËËã¡¢»¯¼òºÍ´ú»»¡¢½â·½³ÌµÈ¼¸¸ö·½ÃæµÄ¹¤¾¬ÆäÏêϸÄÚÈÝ¿Éͨ¹ýMATLABϵͳµÄÁª»ú°ïÖú²éÔÄ£¬±¾½Ú½ö¶ÔËüµÄ³£Óù¦ÄÜ×ö¼òµ¥½éÉÜ¡£7.2.1·ûºÅ±äÁ¿Óë·ûºÅ±í´ïʽMATLAB·ûºÅÔËË㹤¾ßÏä´¦ÀíµÄ¶ÔÏóÖ÷ÒªÊÇ·ûºÅ±äÁ¿Óë·ûºÅ±í´ïʽ¡£ÒªÊµÏÖÆä·ûºÅÔËË㣬Ê×ÏÈÐèÒª½«´¦Àí¶ÔÏó¶¨ÒåΪ·ûºÅ±äÁ¿»ò·ûºÅ±í´ïʽ£¬Æä¶¨Òå¸ñʽÈçÏ£º¸ñʽ1£ºsym(¡®±äÁ¿Ãû¡¯)»òsym(¡®±í´ïʽ¡¯)¹¦ÄÜ£º¶¨ÒåÒ»¸ö·ûºÅ±äÁ¿»ò·ûºÅ±í´ïʽ¡£ÀýÈ磺>>sym(¡®x¡¯)%¶¨Òå±äÁ¿xΪ·ûºÅ±äÁ¿>>sym(¡®x+1¡¯)%¶¨Òå±í´ïʽx+1Ϊ·ûºÅ±í´ïʽ¸ñʽ2£ºsyms±äÁ¿Ãû1±äÁ¿Ãû2¡­¡­±äÁ¿Ãûn¹¦ÄÜ£º¶¨Òå±äÁ¿Ãû1¡¢±äÁ¿2¡­¡­¡¢±äÁ¿ÃûnΪ·ûºÅ±äÁ¿¡£ÀýÈ磺>>symsabxt%¶¨Òåa,b,x,t¾ùΪ·ûºÅ±äÁ¿7.2.2΢»ý·ÖÔËËã1¡¢¼«ÏÞ¸ñʽ£ºlimit(f,t,a,¡®left¡¯or¡®right¡¯)¹¦ÄÜ£ºÇó·ûºÅ±äÁ¿tÇ÷½üaʱ£¬º¯ÊýfµÄ£¨×ó»òÓÒ£©¼«ÏÞ¡£¡®left¡¯±íʾÇó×ó¼«ÏÞ£¬¡®right¡¯±íʾÇóÓÒ¼«ÏÞ£¬Ê¡ÂÔʱ±íʾÇóÒ»°ã¼«ÏÞ£»aÊ¡ÂÔʱ±äÁ¿tÇ÷½ü0£»tÊ¡ÂÔʱĬÈϱäÁ¿Îªx£¬ÈôÎÞxÔòѰÕÒ£¨×Öĸ±íÉÏ£©×î½Ó½ü×ÖĸxµÄ±äÁ¿¡£ÀýÈ磺Çó¼«ÏÞµÄÃüÁî¼°½á¹ûΪ£º>>symsxt>>limit((1+2*t/x)^(3*x),x,inf)ans=exp(6*t)ÔÙÈçÇóº¯Êýx/|x|£¬µ±Ê±µÄ×ó¼«ÏÞºÍÓÒ¼«ÏÞ£¬ÃüÁî¼°½á¹ûΪ£º>>symsx>>limit(x/abs(x),x,0,¡¯left¡¯)ans=-1>>limit(x/abs(x),x,0,¡¯right¡¯)ans=12¡¢µ¼Êý¸ñʽ£ºdiff(f,t,n)¹¦ÄÜ£ºÇóº¯Êýf¶Ô±äÁ¿tµÄn½×µ¼Êý¡£µ±nÊ¡ÂÔʱ£¬Ä¬ÈÏn=1£»µ±tÊ¡ÂÔʱ£¬Ä¬ÈϱäÁ¿x,ÈôÎÞxʱÔò²éÕÒ×Öĸ±íÉÏ×î½Ó½ü×ÖĸxµÄ×Öĸ¡£ÀýÈ磺Çóº¯Êýf=a*x^2+b*x+c¶Ô±äÁ¿xµÄÒ»½×µ¼Êý,ÃüÁî¼°½á¹ûΪ>>symsabcx>>f=a*x^2+b*x+c;>>diff(f)ans=2*a*x+bÇóº¯Êýf¶Ô±äÁ¿bµÄÒ»½×µ¼Êý(¿É¿´×÷Ç󯫵¼),ÃüÁî¼°½á¹ûΪ>>diff(f,b)ans=xÇóº¯Êýf¶Ô±äÁ¿xµÄ¶þ½×µ¼Êý,ÃüÁî¼°½á¹ûΪ>>diff(f,2)ans=2*a3¡¢»ý·Ö¸ñʽ£ºint(f,t,a,b)¹¦ÄÜ£ºÇóº¯Êýf¶Ô±äÁ¿t´Óaµ½bµÄ¶¨»ý·Ö.µ±aºÍbÊ¡ÂÔʱÇó²»¶¨»ý·Ö£»µ±tÊ¡ÂÔʱ,ĬÈϱäÁ¿Îª(×Öĸ±íÉÏ)×î½Ó½ü×ÖĸxµÄ±äÁ¿¡£ÀýÈ磺Çóº¯Êýf=a*x^2+b*x+c¶Ô±äÁ¿x²»¶¨»ý·Ö,ÃüÁî¼°½á¹ûΪ>>symsabcx>>f=a*x^2+b*x+c;>>int(f)ans=1/3*a*x^3+1/2*b*x^2+c*xÇóº¯Êýf¶Ô±äÁ¿b²»¶¨»ý·Ö,ÃüÁî¼°½á¹ûΪ>>int(f,b)ans=a*x^2*b+1/2*b^2*x+c*bÇóº¯Êýf¶Ô±äÁ¿x´Ó1µ½5µÄ¶¨»ý·Ö,ÃüÁî¼°½á¹ûΪ>>int(f,1,5)ans=124/3*a+12*b+4***¡¢¼¶ÊýÇóºÍ¸ñʽ£ºsymsum(s,t,a,b)¹¦ÄÜ£ºÇó±í´ïʽsÖеķûºÅ±äÁ¿t´ÓµÚaÏîµ½µÚbÏîµÄ¼¶ÊýºÍ¡£ÀýÈ磺Çó¼¶ÊýµÄǰÈýÏîµÄºÍ,ÃüÁî¼°½á¹ûΪ>>symsum(1/x,1,3)ans=11/67.2.3»¯¼òºÍ´ú»»MATLAB·ûºÅÔËË㹤¾ßÏäÖУ¬°üÀ¨Á˽϶àµÄ´úÊýʽ»¯¼òºÍ´ú»»¹¦ÄÜ£¬ÏÂÃæ½ö¾Ù³ö²¿·Ö³£¼ûÔËËã¡£simplifyÀûÓø÷ÖÖºãµÈʽ»¯¼ò´úÊýʽexpand½«³Ë»ýÕ¹¿ªÎªºÍʽfactor°Ñ¶àÏîʽת»»Îª³Ë»ýÐÎʽcollectºÏ²¢Í¬ÀàÏîhorner°Ñ¶àÏîʽת»»ÎªÇ¶Ì×±íʾÐÎʽÀýÈ磺½øÐкϲ¢Í¬ÀàÏîÖ´ÐÐ>>symsx>>collect(3*x^3-0.5*x^3+3*x^2)ans=5/2*x^3+3*x^2)½øÐÐÒòʽ·Ö½âÖ´ÐÐ>>factor(3*x^3-0.5*x^3+3*x^2)ans=1/2*x^2*(5*x+6)7.2.4½â·½³Ì1¡¢´úÊý·½³Ì¸ñʽ£ºsolve(f,t)¹¦ÄÜ£º¶Ô±äÁ¿t½â·½³Ìf=0£¬tȱʡʱĬÈÏΪx»ò×î½Ó½ü×ÖĸxµÄ·ûºÅ±äÁ¿¡£ÀýÈ磺Çó½âÒ»Ôª¶þ´Î·½³Ìf=a*x^2+b*x+cµÄʵ¸ù£¬>>symsabcx>>f=a*x^2+b*x+c;>>solve(f,x)ans=[1/2/a*(-b+(b^2-4*a*c)^(1/2))][1/2/a*(-b-(b^2-4*a*c)^(1/2))]2¡¢Î¢·Ö·½³Ì¸ñʽ£ºdsolve(¡®s¡¯,¡¯s1¡¯,¡¯s2¡¯,¡­,¡¯x¡¯)ÆäÖÐsΪ·½³Ì£»s1,s2,¡­¡­Îª³õʼÌõ¼þ£¬È±Ê¡Ê±¸ø³öº¬ÈÎÒâ³£Êýc1,c2,¡­¡­µÄͨ½â£»xΪ×Ô±äÁ¿£¬È±Ê¡Ê±Ä¬ÈÏΪt¡£ÀýÈ磺Çó΢·Ö·½³ÌµÄͨ½â>>dsolve(¡®Dy=1+y^2¡¯)ans=tan(t+c1)7.3ÓÅ»¯¹¤¾ßÏä¼°ÆäÓ¦ÓÃÔÚ¹¤³ÌÉè¼Æ¡¢¾­¼Ã¹ÜÀíºÍ¿ÆÑ§Ñо¿µÈÖî¶àÁìÓòÖУ¬ÈËÃdz£³£»áÓöµ½ÕâÑùµÄÎÊÌ⣺ÈçºÎ´ÓÒ»ÇпÉÄܵķ½°¸ÖÐÑ¡Ôñ×îºÃ¡¢×îÓŵķ½°¸£¬ÔÚÊýѧÉϰÑÕâÀàÎÊÌâ³ÆÎª×îÓÅ»¯ÎÊÌâ¡£ÕâÀàÎÊÌâºÜ¶à£¬ÀýÈçµ±Éè¼ÆÒ»¸ö»úеÁã¼þʱÈçºÎÔÚ±£Ç¿¶ÈµÄǰÌáÏÂÊ¹ÖØÁ¿×îÇá»òÓÃÁ¿×îÊ¡£¨µ±È»Íµ¹¤¼õÁϳýÍ⣩£»ÈçºÎÈ·¶¨²ÎÊý£¬Ê¹Æä³ÐÔØÄÜÁ¦×ÔÚ°²ÅÅÉú**ʱ£¬ÈçºÎÔÚÏÖÓеÄÈËÁ¦¡¢É豸µÄÌõ¼þÏ£¬ºÏÀí°²ÅÅÉú**£¬Ê¹Æä**Æ·µÄ×Ü**Öµ×ÔÚÈ·¶¨¿â´æÊ±ÈçºÎÔÚ±£ÏúÊÛÁ¿µÄǰÌáÏ£¬Ê¹¿â´æ³É±¾×îС£»ÔÚÎï×ʵ÷Åäʱ£¬ÈçºÎ×éÖ¯ÔËÊäʹÔËÊä·ÑÓÃ×îÉÙ¡£ÕâЩ¶¼ÊôÓÚ×îÓÅ»¯ÎÊÌâËùÑо¿µÄ¶ÔÏó¡£MATLABµÄÓÅ»¯¹¤¾ßÏä±»·ÅÔÚtoolboxĿ¼ÏµÄoptim×ÓĿ¼ÖУ¬ÆäÖаüÀ¨ÓÐÈô¸É¸ö³£ÓõÄÇó½âº¯Êý×îÓÅ»¯ÎÊÌâµÄ³ÌÐò¡£MATLABµÄÓÅ»¯¹¤¾ßÏäÒ²ÔÚ²»¶ÏµØÍêÉÆ¡£²»Í¬°æ±¾µÄMATLAB£¬Æä¹¤¾ßÏä²»ÍêÈ«Ïàͬ¡£ÔÚMATLAB5.3°æ±¾ÖУ¬¶ÔÓÅ»¯¹¤¾ßÏä×÷ÁËÈ«ÃæµÄ¸Ä½ø¡£Ã¿¸öÔ­Óеij£ÓóÌÐò¶¼ÖØÐ±àÖÆÁËÒ»¸öеijÌÐò¡£³ýfzeroºÍfsolveÍâ¶¼ÖØÐÂÆðÁËÃû×Ö¡£ÕâЩгÌÐòʹÓÃÒ»Ì×еĿØÖÆËã·¨µÄÑ¡Ïî¡£ÓëÔ­ÓеijÌÐòÏà±È£¬Ð³ÌÐòµÄ¹¦ÄÜÔöÇ¿ÁË¡£ÔÚMATLAB5.3ºÍ6.0°æ±¾ÖУ¬Ô­ÓеÄÓÅ»¯³ÌÐò£¨³ýfzeroºÍfsolveÍ⣩ÈÔÈ»±£Áô²¢ÇÒ¿ÉÒÔʹÓ㬵«ÊÇËüÃdzÙÔç»á±»³·ÏûµÄ¡£¼øÓÚÉÏÊöÇé¿ö£¬±¾Ê齫ֻ½éÉÜÄÇЩеij£ÓõöÓÅ»¯³ÌÐò¡£