
Òѽâ¾öÎÊÌâ
¹È¸èmx725206Óû§ÔÚ2013.09.16Ìá½»Á˹ØÓÚ¡°Éú»î¶ÔÎÒÏÂÊÖÁËÇë¸ßÊÖ°ïæ¸Ämatlab³ÌÐò¡±µÄÌáÎÊ£¬»¶Ó´ó¼ÒÓ¿Ô¾·¢±í×Ô¼ºµÄ¹Ûµã¡£Ä¿Ç°¹²ÓÐ1¸ö»Ø´ð£¬×îºó¸üÐÂÓÚ2024-12-14T15:09:20¡£functionroot=Par**la(f,a,b,x,eps)if(nargin==4)
eps=1.0e-4;
end
f1=subs(sym(f),findsym(sym(f)),a);
f2=subs(sym(f),findsym(sym(f)),b);
if(f1==0)
root=a;
end
if(f2==0)
root=b;
end
if(f1*f2>0)
disp('Á½¶Ëµãº¯ÊýÖ**Ë»ý´óÓÚ0!');
return;
else
tol=1;
fa=subs(sym(f),findsym(sym(f)),a);
fb=subs(sym(f),findsym(sym(f)),b);
**=subs(sym(f),findsym(sym(f)),x);
d1=(fb-fa)/(b-a);
d2=(**-fb)/(x-b);
d3=(d2-d1)/(x-a);
B=d2+d3*(x-b);
root=x-2***/(B+sign(B)*sqrt(B^2-4****d3));
t=zeros(3);
t(1)=a;
t(2)=b;
t(3)=x;
while(tol>eps)
t(1)=t(2);
t(2)=t(3);
t(3)=root;
f1=subs(sym(f),findsym(sym(f)),t(1));
f2=subs(sym(f),findsym(sym(f)),t(2));
f3=subs(sym(f),findsym(sym(f)),t(3));
d1=(f2-f1)/(t(2)-t(1));
d2=(f3-f2)/(t(3)-t(2));
d3=(d2-d1)/(t(3)-t(1));
B=d2+d3*(t(3)-t(2));
root=t(3)-2*f3/(B+sign(B)*sqrt(B^2-4*f3*d3));
tol=abs(root-t(3));
end
end
ÒÔÉÏΪÓÃÅ×ÎïÏßµü´ú·¨Çó½â·ÇÏßÐÔ·½³ÌµÄ³ÌÐò£¬Çë°ïÎҸĸÄÔõô²ÅÄÜÈÃËûÏÔʾµü´ú¹ý³Ì£¬Ð»Ð»
лллллллллл!!!!!!Ï£Íû´ó¼ÒÄܹ»°ïÖúËý¡£
ÏêϸÎÊÌâÃèÊö¼°ÒÉÎÊ£ºfunctionroot=Par**la(f,a,b,x,eps)
if(nargin==4)
eps=1.0e-4;
end
f1=subs(sym(f),findsym(sym(f)),a);
f2=subs(sym(f),findsym(sym(f)),b);
if(f1==0)
root=a;
end
if(f2==0)
root=b;
end
if(f1*f2>0)
disp('Á½¶Ëµãº¯ÊýÖ**Ë»ý´óÓÚ0!');
return;
else
tol=1;
fa=subs(sym(f),findsym(sym(f)),a);
fb=subs(sym(f),findsym(sym(f)),b);
**=subs(sym(f),findsym(sym(f)),x);
d1=(fb-fa)/(b-a);
d2=(**-fb)/(x-b);
d3=(d2-d1)/(x-a);
B=d2+d3*(x-b);
root=x-2***/(B+sign(B)*sqrt(B^2-4****d3));
t=zeros(3);
t(1)=a;
t(2)=b;
t(3)=x;
while(tol>eps)
t(1)=t(2);
t(2)=t(3);
t(3)=root;
f1=subs(sym(f),findsym(sym(f)),t(1));
f2=subs(sym(f),findsym(sym(f)),t(2));
f3=subs(sym(f),findsym(sym(f)),t(3));
d1=(f2-f1)/(t(2)-t(1));
d2=(f3-f2)/(t(3)-t(2));
d3=(d2-d1)/(t(3)-t(1));
B=d2+d3*(t(3)-t(2));
root=t(3)-2*f3/(B+sign(B)*sqrt(B^2-4*f3*d3));
tol=abs(root-t(3));
end
end
ÒÔÉÏΪÓÃÅ×ÎïÏßµü´ú·¨Çó½â·ÇÏßÐÔ·½³ÌµÄ³ÌÐò£¬Çë°ïÎҸĸÄÔõô²ÅÄÜÈÃËûÏÔʾµü´ú¹ý³Ì£¬Ð»Ð»
лллллллллл!!!!!!ÆÚ´ýÄúµÄ´ð°¸£¬Ï£ÍûÄãÄܸÐÊܵ½,ÎÒ×îÕæ³ÏµÄлÒâ
£¡